If it's not what You are looking for type in the equation solver your own equation and let us solve it.
j^2-14(j)=9
We move all terms to the left:
j^2-14(j)-(9)=0
a = 1; b = -14; c = -9;
Δ = b2-4ac
Δ = -142-4·1·(-9)
Δ = 232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{232}=\sqrt{4*58}=\sqrt{4}*\sqrt{58}=2\sqrt{58}$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{58}}{2*1}=\frac{14-2\sqrt{58}}{2} $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{58}}{2*1}=\frac{14+2\sqrt{58}}{2} $
| -6x+2=8x+5 | | 2(3x-3)=(5+x) | | 132-x=5x | | 123-x=4.5x | | 123-x=5.5x | | 123-x=6x | | 4•x+6•x=36 | | 123-x=5x | | 2(2-3x)=2(4x+5) | | 123-x=3x | | 123-x=4x | | 123-x=2x | | 244-x=29x | | 3x+8-9(x-1)=2x+6 | | 3Px=6 | | 678-x=2x | | 678-x=6x | | 678-x=7x | | 678-x=8x | | 6x-9=2x-101 | | 6f-4=3f+11 | | -8+4=|-16+10x | | 3A3-11=21+a | | 135=(5+x)+x+(5+x)/3 | | 5w-7=2w+35 | | 3m²+m÷2=0 | | -0.6(z+1)=-0.4(z+3) | | 228-x=11x | | 6y²-149y-102=0 | | F(0)=5x^2+4x | | 144-x=7x | | 6x+6=−12 |